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Abstract
The method of hodograph transformation is used to find a class of exact
solutions of the dispersionless Dym (dDym) equation and its reductions. In
particular, we discuss hodograph solutions of one-variable and two-variable
reductions of the dDym system and investigate their associated Lax as well as
Hamiltonian formalism.

PACS number: 02.30.Ik

1. Introduction

One of important issues in the studies of dispersionless integrable systems (see e.g. [1] and
references therein) is to find or to solve their finite-dimensional reductions since their integrable
structures have been revealed in theoretical physics and mathematics, such as 2D topological
field theories (TFT), matrix models, Frobenius manifolds and conformal maps, etc (see e.g.
[2–7]). In [8, 9] Kodama and Gibbons found exact solutions of the dispersionless Kadomtsev–
Petviashvili (dKP) equation and its reductions by using hodograph transformations [10] and
obtained general hodograph equations for hydrodynamic-type equations [11]. Then it was
further pointed out [3, 6] that the hodograph equation associated with a finite-dimensional
reduction of dKP is identified as the string equation [2] of the corresponding TFT so that the
parameters characterizing the hierarchy flows are related to the coupling constants in TFT.
In this paper, motivated by the dKP, we make an attempt to address this correspondence for
the dispersionless Dym (dDym) hierarchy which, with respect to the dKP, is the nonstandard
dispersionless hierarchy within the Sato approach. In [12] the Poisson structures of the
dDym hierarchy were given and have been used to obtain those Poisson structures of finite-
dimensional reductions of the dDym system by the Dirac procedure [13, 14]. Furthermore,
in our previous work [14], we showed that a two-variable reduction of the dDym system can
be described as a topological Landau–Ginzburg model with two primary fields. Therefore,
inspired by these observations, it is quite interesting to investigate the solution structure of
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the dDym system from the point of view of hodograph transformation. Before going further,
let us recall the construction of dDym theory as a dispersionless (quasi-classical) limit of the
Dym theory.

2. Dispersionless Dym equations

The Dym hierarchy is defined by the Lax operator [15, 16]

L = u1∂ + u0 + u−1∂
−1 + u−2∂

−2 + · · · ∂ = ∂/∂x (2.1)

which satisfies the Lax equations

∂nL = [Bn,L] n = 2, 3, . . . (2.2)

where ∂n = ∂tn and Bn = (Ln)�2 means the differential part of order �2 of Ln. The first
nontrivial equation is the Dym equation in 2 + 1 dimensions [17]

ut = 1

4
u3uxxx +

3

4
u−1

[
u2∂−1

x

(uy

u2

)]
y

(y = t2, t = t3). (2.3)

The Lax equation (2.2) is equivalent to the following compatible linear systems

L�Dym = λ�Dym ∂n�Dym = Bn�Dym (2.4)

where �Dym is the so-called Baker–Akhiezer (BA) function of the system. For the
dispersionless limit one can use averaging procedures, by simply taking tn → εtn = Tn

in the linear system (2.4). It turns out that

Lε = u1(T /ε)(ε∂) + u0(T /ε) + u−1(T /ε)(ε∂)−1 + u−2(T /ε)(ε∂)−2 + · · ·
where we assume u−n(T /ε) = U−n(T )+O(ε), n � −1. One then takes a Wentzel–Kramers–
Brillouin (WKB) form for the BA function �Dym

�Dym = exp

[
1

ε
SDym(T , λ)

]
.

Now, replacing ∂n by ε∂/∂Tn and denoting the momentum function P = ∂XSDym, then
εi∂i�Dym → P i�Dym as ε → 0 and the linear equation L�Dym = λ�Dym implies that

λ =
∞∑

n=−1

U−n(T )P −n.

Similarly, we apply the WKB analysis for the linear system ∂n�Dym = Bn�Dym which yields

∂Tn
SDym = Bn = (λn)�2 (2.5)

where the subscript (�2) refers to the projection of powers of P. The first few of them are

B1 = 0 B2 = U 2
1 P 2 B3 = U 3

1 P 3 + 3U 2
1 U0P

2

B4 = U 4
1 P 4 + 4U 3

1 U0P
3 +

(
6U 2

1 U 2
0 + 4U 3

1 U−1
)
P 2

· · · .
Differentiating both sides of (2.5) with respect to X, we obtain the conservation equations for
the momentum function P:

∂Tn
P = ∂XBn. (2.6)

It is easy to show [3] that equation (2.6) can be written in Lax form as

∂nλ = {Bn, λ} (2.7)
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where the Poisson bracket {, } is defined by

{f (X, P ), g(X, P )} = ∂f

∂P

∂g

∂X
− ∂f

∂X

∂g

∂P
.

Equation (2.7) defines what we call the dDym hierarchy and determines the evolution
equations for Ui . Note that ∂1λ = 0 and hence Ui do not depend on t1. On the other
hand, the compatibility equations for (2.6) (or (2.7)), i.e. ∂2P/∂Tn∂Tm = ∂2P/∂Tm∂Tn (or
∂2λ/∂Tn∂Tm = ∂2λ/∂Tm∂Tn), imply the zero curvature condition:

∂Tm
Bn − ∂Tn

Bm + {Bn,Bm} = 0.

For m = 2 and n = 3 we have

2U 2
1 U0X = U1Y 3

(
U 2

1 U0
)
Y

= −2U1U1T

where T2 = Y, T3 = T . Eliminating U0 we obtain the (2+1)-dimensional dDym equation

U1T = 3

4
U−1

1

[
U 2

1 ∂−1
X

(
U1Y

U 2
1

)]
Y

(2.8)

which is just the dispersionless limit of (2.3) by dropping the dispersion term uxxx . Motivated
by the dKP theory, we would like to solve (2.8) by using hodograph transformation [8, 10].
From the T2- and T3-flow of the conservation equations (2.6) we have

PY = (U 2P 2)X PT = (U 3P 3)X + 3(U 2V P 2)X (2.9)

where U1 = U,U0 = V . Following [8], one can consider the N-reductions of (2.6) or the Lax
equations (2.7) so that the momentum function P or λ defined above depends only on a set of
functions (W1, . . . ,WN) with W1 = U , and (W1, . . . ,WN) satisfy commuting flows

∂W

∂Tn

= An(W)
∂W

∂X
n � 2 (2.10)

where the N × N matrices An are functions of (W1, . . . ,WN) only. To discuss solutions of
the (2+1)-dimensional dDym equation (2.8) and its reductions, we only need to consider the
first two flows, i.e.,

Wi,Y =
N∑

j=1

AijWj,X Wi,T =
N∑

j=1

BijWj,X i = 1, . . . , N (2.11)

where A = A2 and B = A3. Equations (2.9) together with (2.11) provide the starting point
for hodograph transformations. We will comment on the higher Tn-flows (n > 3) at the end
of the paper. In the following, we shall consider the cases for N = 1 and N = 2 and leave the
general situations for a future publication.

3. N = 1

In this case P = P(U) and (2.11) becomes

UY = A(U)UX UT = B(U)UX (3.1)

which together with (2.9) imply that

(A − 2U 2P)
dP

dU
= 2UP 2

(3.2)
(B − 3U 2P 2 − 6U 2V P )

dP

dU
= 3U 2P 3 + 6UV P 2 + 3U 2 dV

dU
P 2
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with

A = 2U 2 dV

dU
B = 3V A +

3

4
U−1A2. (3.3)

As a consistency check, by substituting (3.3) into (3.1), we get (2.8) as expected. The solutions
of (3.1), and hence that of (2.8), can be obtained by using the hodograph transformations with
the change of variables (X, Y, T ) → (U, Y, T ) with X = X(U, Y, T ). The hodograph
equations for X are given by

∂X

∂Y
= −A

∂X

∂T
= −B = −3V A − 3

4
U−1A2

which can be easily integrated as

X + A(U)Y +
(
3V A(U) + 3

4U−1A2(U)
)
T = F(U) (3.4)

where F(U) is an arbitrary function of U. Thus, in view of (3.4), the initial condition
U(X, Y, 0) = U0(X, Y ) for the dDym equation (2.8) can be transformed to X + A(U0)Y =
F(U0). To illustrate, let us give a concrete example. For A(U) = −1 we can integrate (3.2)
for P(U) and write down its corresponding hodograph equations. It turns out that

U 2P 2 + P = λ2 X − Y − 3
4T U−1 = F(U) (3.5)

where λ is determined by the condition P 2 + P = λ2 at U = 1. The first equation of (3.5)
defines a one-variable reduction of the dDym hierarchy with Lax operator

L = λ2 = ŪP 2 + P Ū = U 2 (3.6)

which satisfies the Lax equations

∂nL = {(Ln/2)�2, L} n = 2, 3, 5, . . . . (3.7)

We list the first few nontrivial equations as

∂T2Ū = −ŪX ∂T3Ū = − 3
4 Ū−1/2ŪX

∂T5Ū = 5
32 Ū−3/2ŪX ∂T7Ū = − 21

512 Ū−5/2ŪX (3.8)

· · ·
where the T2-flow shows that Ū depends on X and T2 only through the combination X–T2.
The inversion of (3.6) gives

P(Ū) = 1

2Ū
(−1 +

√
1 + 4Ūλ2)

which has asymptotic expansion in λ

P = λ√
Ū

− 1

2Ū
−

∞∑
i=0

1

2
H2i+1λ

−(2i+1).

Here the coefficients Hi are nothing but the conserved densities associated with the Lax flows
(3.7) [18], and can be expressed in terms of L as

H2i+1 = 2

2i + 1
res

(
L

2i+1
2

)
i = 0, 1, 2, . . . .

Some of them are given by

H1 = − 1
4 Ū−3/2 H3 = 1

64 Ū−5/2 H5 = − 1
512 Ū−7/2.

We can also rewrite the Lax flows in bi-Hamiltonian form

∂T2n+1Ū = − 32n(n + 1)

(2n − 1)(2n + 3)
J2∇H2n+1 = 128n(n + 2)

(2n − 1)(2n + 5)
J1∇H2n+3



Solving the dispersionless Dym equation by hodograph transformations 9879

where n = 0, 1, 2, . . . and the Hamiltonian operators are defined by

J2 = Ū 2∂XŪ 2 J1 = Ū 5/2∂XŪ 5/2.

We remark that the solution of the first two equations of (3.8), i.e., T2- and T3-flows, also
satisfies the dDym equation (2.8). To find solutions for (3.8) we substitute, for example,
F(U) = U−1 and F(U) = −U into the hodograph equation (3.5) and obtain

U(X, Y, T ) =
3
4T + 1

X − Y
F(U) = U−1

U(X, Y, T ) = −1

2
(X − Y +

√
(X − Y )2 + 3T ) F (U) = −U.

The first solution has the singularity defined by X = Y while the second one is globally
defined for T > 0.

In fact, we may consider other functions of the form A(U) = αUm,m ∈ Z. We list them
below without going into details:

(UP )2−m +
α(2 − m)

2(m − 1)
P 1−m = λ2−m (m � 0)

(UP )m−1

UP + α(2−m)

2(m−1)
Um−1

= λm−2 (m � 3)

P e−2UP/α = λ (m = 1)

UP eα/2P = λ (m = 2)

where the constant λ is fixed at U = 1. The associated hodograph equations describing T2-
and T3-flows are

X + αUmY +
3α2(m + 1)

4(m − 1)
U 2m−1T = F(U) (m �= 1)

X + αUY +
3

4
α2U(1 + 2 ln U)T = F(U) (m = 1).

The cases shown above provide one-variable reductions of the dDym system including the one
we study in detail (i.e., α = −1,m = 0). If we properly choose F(U) ∝ Un with n ∈ Z then
the associated hodograph equations become algebraic equations that may be easily solved.
Even for the case of m = 1, if we choose F(U) = C or F(U) = CU then the hodograph
solutions can be expressed in terms of Lambert’s W -function. Also one can read off the
conserved densities from the expansion of P in λ in each case.

4. N = 2

In this case we denote W1 = U,W2 = W , then P = P(U,W) and (2.11) has the form

∂

∂Y

(
U

W

)
= A

∂

∂X

(
U

W

)
∂

∂T

(
U

W

)
= B

∂

∂X

(
U

W

)
(4.1)

where A = (Aij ) and B = (Bij ) are 2 × 2 matrix functions of U and W . By requiring that
UX and WX are independent, (2.9) gives the equations for P(U,W),

(A11 − 2U 2P)PU + A21PW = 2UP 2

(4.2)
A12PU + (A22 − 2U 2P)PW = 0
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(B11 − 3U 3P 2 − 6U 2V P )PU + B21PW = 3U 2P 3 + 6UV P 2 + 3U 2VUP 2

(4.3)
B12PU + (B22 − 3U 3P 2 − 6U 2V P )PW = 3U 2VWP 2

where we denote PU = ∂P/∂U, PW = ∂P/∂W and so on. From (4.2) and (4.3), we see that
A and B satisfy

A11 = 2U 2VU A12 = 2U 2VW B = 3V A + 3
4U−1A2. (4.4)

Also, the compatibility condition for (4.1) requires A to satisfy(−(U−1 det A)W

(U−1 det A)U

)
= A

(−(4V + U−1 Tr A)W

(4V + U−1 Tr A)U

)
(4.5)

where the formula A2 = (Tr A)A − (det A)I has been used. To solve (4.1), we use the
hodograph transformation by changing the independent variables (X, Y, T ) to (U,W, T ) with
the dependent variables X = X(U,W, T ) and Y = Y (U,W, T ). In terms of the new variables,
(4.1) becomes (−XW

XU

)
= A

(
YW

−YU

) (
∂(X, Y )/∂(W, T )

−∂(X, Y )/∂(U, T )

)
= B

(
YW

−YU

)
(4.6)

where ∂(X, Y )/∂(W, T ) = XWYT − XT YW . With the relation of A and B, it is easy to show
that (4.6) has solutions of the form

X − 3
4U−1 (det A) T = F(U,W)

(4.7)
Y +

(
3V + 3

4U−1 Tr A
)
T = G(U,W)

where we have required that XU and YU (or XW and YW ) are independent. Also, using (4.5),
(4.7), and the first equation in (4.6) one can show that F and G satisfy the linear equations(−FW

FU

)
= A

(
GW

−GU

)
. (4.8)

Note that, by (4.7), the associated initial condition U(X, Y, 0) = U0(X, Y ) and W(X, Y, 0) =
W0(X, Y ) satisfying the Y equations in (4.1) can be transformed to F(U0,W0) = X and
G(U0,W0) = Y . Using (4.8) and the compatibility condition FUW = FWU we can obtain a
defining equation for G(U,W). A simple example is given by the matrix

A =
(

0 2U 2

2U 0

)
which implies V = W and (4.2) can be easily solved as

UP + W +
1

P
= λ (4.9)

with condition P + 1/P = λ at U = 1,W = 0. We note that (4.9) defines a two-variable Lax
reduction of the dDym system [13, 14] and the first few nontrivial Lax equations are given by(

U

W

)
T2

=
(

2U 2WX

(U 2)X

)
(

U

W

)
T3

=
(

3U 2(U + W 2)X

3(U 2W)X

)
(4.10)

(
U

W

)
T4

=
(

4U 2(3UW + W 3)X

(4U 3 + 6U 2W 2)X

)
.
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The associated conserved density of the reduced system can be extracted from

P(U,W) = 1

2U
(λ − W +

√
(λ − W)2 − 4U).

Expanding P in an asymptotic form

P = λ − W

U
− 1

λ
−

∞∑
i=1

Hi+1λ
−(i+1)

we obtain the conserved densities Hi = res(Li)/i and some of them are given by

H2 = W H3 = U + W 2 H4 = 3UW + W 3

and so on. In fact these symmetries can be expressed in bi-Hamiltonian form(
U

W

)
Tn

= J1∇Hn+1 = J2∇Hn n � 2

where ∇Hn = t (∂Hn/∂U, ∂Hn/∂W) and J1 and J2 are defined by [13, 14]

J1 =
(

0 U 2∂X

∂XU 2 0

)
J2 =

(
U∂XU 2 + U 2∂XU U 2W−1∂XW 2

W 2∂XU 2W−1 2U∂XU

)
.

On the other hand, the hodograph equation (4.7) is given by

X + 3U 2T = F(U,W) Y + 3WT = G(U,W)

where G satisfies the defining equation

GWW − UGUU − 2GU = 0 (4.11)

which, for example, has a simple solution G = − 1
2U−1 = Y + 3WT and hence, by (4.8),

F = W = X + 3U 2T . By eliminating W , we get a hodograph equation

18T 2U 3 + 2(3XT + Y )U + 1 = 0.

The above equation has a simple solution

U(X, Y, T ) = f

18T
− 2(3XT + Y )

3Tf

with

f = (−162T + 6
√

3
√

432X3T 3 + 432X2YT 2 + 144XY 2T + 16Y 3 + 243T 2)1/3

which is a kind of shock wave (due to a multi-valued function) and satisfies the first two
equations of (4.10) and the dDym equation (2.8). The second matrix A satisfying (4.5) is
given by

A =
(

− 4
3WU−1 2

3

−2U 0

)

which implies V = W/3U 2 and (4.2) can be easily solved as

U 3P 3 + WP 2 + P = λ3 (4.12)

with condition P 3 + P = λ3 at U = 1,W = 0. The hodograph equation (4.7) is given by

X − T = F(U,W) Y = G(U,W)

where G satisfies the defining equation

U 2GUU + 3U 3GWW + 2UWGUW − 2WGW = 0.
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Both (4.9) and (4.12) are also two-variable Lax reductions of the Dym system that have been
introduced recently in [13]. In fact, using (4.4) and (4.5), we have

A =
(

2(1−m)

m
WU 2−m 2

m
U 3−m

2(2 − m)U 0

)
(4.13)

provided that V = WU 1−m/m,m ∈ Z \ {0, 2} and A22 = 0. Equation (4.13) describes a class
of two-variable reductions of the dDym hierarchy including the previous examples (m = 1, 3).
Integrating (4.2) with respect to U and W , respectively, we obtain

UmP m + WP m−1 + P m−2 = λm

where λ is fixed at U = 1,W = 0. The associated hodograph equations then are given by

X +
3(2 − m)

m
U 3−mT = F(U,W) Y +

3(3 − m)

2m
U 1−mWT = G(U,W)

where G satisfies the defining equation

U 2GUU + m(m − 2)UmGWW + (m − 1)UWGUW + (3 − m)UGU

− (m − 1)(m − 2)WGW = 0.

5. Conclusions

We have investigated exact solutions of the (2+1)-dimensional dDym equation. The
conservation equations together with the hydrodynamic-type equations enable us to solve
dDym equation by hodograph transformations. We discuss one-variable and two-variable
reductions of the dDym system and obtain their hodograph solutions. We show that these Lax
reductions possess an infinite number of symmetries and can be described in the Hamiltonian
formalism. Our results not only provide exact solutions of the dDym equation but also bring
out several finite-dimensional reductions of the dDym system that have never been discussed
before.

Finally, we remark that it is not hard to extend hodograph equations of N-reductions to
higher hierarchy flows by decomposing the N × N matrices An in the higher commuting
flows of the hydrodynamic-type equations (2.10) into the first N independent flows [9, 10].
In fact, it can be shown that An = vn(A2/2U 2) where vn(P ) is a polynomial in P of
order n − 1 defined by ∂Bn/∂P . Due to the recursion relation between vn(P ), one can
show that AN+k = ∑N

i=1 µi
kAi, k � 1 where A1 ≡ IN×N and µi

k = µi
k(W) are scalar

functions of {Wi}. This fact together with (2.10) implies that the solution of N-reduction
dDym hierarchies can be given in the form Wi(X, T2, . . .) = W 0

i

(
T 0

1 , T 0
2 , . . . , T 0

N

)
where

W 0
i (X, T2, . . . , TN) = Wi(X, T2, . . . , TN, 0, . . .) and T 0

i = Ti +
∑∞

k=1 µi
kTN+k, 1 � i � N

(cf [9]). Hence, the matrices A = A2 associated with reductions presented previously would
be a good starting point to do that. On the other hand, it has been shown [1] that solutions of
dispersionless hierarchies can be constructed by the Riemann–Hilbert decomposition which
has the advantage of studying symmetries of solutions. Work in these directions is now in
progress.
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